Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hippocampus ; 32(9): 639-659, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35913094

RESUMO

The hippocampal formation is essential for spatial navigation and episodic memory. The anatomical structure is largely similar across mammalian species, apart from the deep polymorphic layer of the dentate gyrus and the adjacent part of cornu ammonis 3 (CA3) which feature substantial variations. In rodents, the polymorphic layer has a triangular cross-section abutting on the end of the CA3 pyramidal layer, while in primates it is long and band-shaped capping the expanded CA3 end, which here lacks a distinct pyramidal layer. This structural variation has resulted in a confusing nomenclature and unclear anatomical criteria for the definition of the dentate-ammonic border. Seeking to clarify the border, we present here a light microscopic investigation based on Golgi-impregnated and Timm-thionin-stained sections of the Artiodactyla sheep and domestic pig, in which the dentate gyrus and CA3 end have some topographical features in common with primates. In short, the band-shaped polymorphic layer coincides with the Timm-positive mossy fiber collateral plexus and the Timm-negative subgranular zone. While the soma and excrescence-covered proximal dendrites of the mossy cells are localized within the plexus, the peripheral mossy cell dendrites extend outside the plexus, both into the granular and molecular layers, and the CA3. The main mossy fibers leave the collateral plexus in a scattered formation to converge gradually through the CA3 end in between the dispersed pyramidal cells, which are of three subtypes, as in monkey, with the classical apical subtype dominating near the hidden blade, the nonapical subtype near the exposed blade, and the dentate subtype being the only pyramidal cells that extend dendrites into the dentate gyrus. In agreement with our previous study in mink, the findings show that the border between the dentate gyrus and the CA3 end can be more accurately localized by the mossy fiber system than by cyto-architecture alone.


Assuntos
Carneiro Doméstico , Sus scrofa , Animais , Região CA3 Hipocampal , Giro Denteado , Hipocampo , Ovinos , Suínos
2.
Cell Rep ; 35(8): 109175, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34038726

RESUMO

CA1 and subiculum (SUB) connect the hippocampus to numerous output regions. Cells in both areas have place-specific firing fields, although they are more dispersed in SUB. Weak responses to head direction and running speed have been reported in both regions. However, how such information is encoded in CA1 and SUB and the resulting impact on downstream targets are poorly understood. Here, we estimate the tuning of simultaneously recorded CA1 and SUB cells to position, head direction, and speed. Individual neurons respond conjunctively to these covariates in both regions, but the degree of mixed representation is stronger in SUB, and more so during goal-directed spatial navigation than free foraging. Each navigational variable could be decoded with higher precision, from a similar number of neurons, in SUB than CA1. The findings point to a possible contribution of mixed-selective coding in SUB to efficient transmission of hippocampal representations to widespread brain regions.


Assuntos
Mapeamento Encefálico/métodos , Hipocampo/fisiologia , Humanos
3.
Nat Commun ; 12(1): 253, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431847

RESUMO

Grid cells are part of a widespread network which supports navigation and spatial memory. Stable grid patterns appear late in development, in concert with extracellular matrix aggregates termed perineuronal nets (PNNs) that condense around inhibitory neurons. It has been suggested that PNNs stabilize synaptic connections and long-term memories, but their role in the grid cell network remains elusive. We show that removal of PNNs leads to lower inhibitory spiking activity, and reduces grid cells' ability to create stable representations of a novel environment. Furthermore, in animals with disrupted PNNs, exposure to a novel arena corrupted the spatiotemporal relationships within grid cell modules, and the stored representations of a familiar arena. Finally, we show that PNN removal in entorhinal cortex distorted spatial representations in downstream hippocampal neurons. Together this work suggests that PNNs provide a key stabilizing element for the grid cell network.


Assuntos
Células de Grade/citologia , Neurônios/citologia , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Córtex Entorrinal/citologia , Hipocampo/fisiologia , Masculino , Modelos Neurológicos , Ratos Long-Evans , Ritmo Teta/fisiologia , Fatores de Tempo
4.
Hippocampus ; 26(2): 229-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26286893

RESUMO

Detailed knowledge about the neural circuitry connecting the hippocampus and entorhinal cortex is necessary to understand how this system contributes to spatial navigation and episodic memory. The two principal cell types of the dentate gyrus, mossy cells and granule cells, are interconnected in a positive feedback loop, by which mossy cells can influence information passing from the entorhinal cortex via granule cells to hippocampal pyramidal cells. Mossy cells, like CA3 pyramidal cells, are characterized by thorny excrescences on their proximal dendrites, postsynaptic to giant terminals of granule cell axons. In addition to disynaptic input from the entorhinal cortex and perforant path via granule cells, mossy cells may also receive monosynaptic input from the perforant path via special dendrites ascending to the molecular layer. We here report qualitative and quantitative descriptions of Golgi-stained hippocampal mossy cells in mink, based on light microscopic observations and three-dimensional reconstructions. The main focus is on the location, branching pattern, and length of dendrites, particularly those ascending to the granular and molecular layers. In mink, the latter dendrites are more numerous than in rat, but fewer than in primates. They form on average 12% (and up to 29%) of the total dendritic length, and appear to cover the terminal fields of both the lateral and medial perforant paths. In further contrast to rat, the main mossy cell dendrites in mink branch more extensively with distal dendrites encroaching upon the CA3 field. The dendritic arbors extend both along and across the septotemporal axis of the dentate gyrus, not conforming to the lamellar pattern of the hippocampus. The findings suggest that the afferent input to the mossy cells becomes more complex in species closer to primates.


Assuntos
Dendritos/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Animais , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Vison , Vias Neurais/citologia , Vias Neurais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...